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ABSTRACT

Since the existence of human life, the act of storing acquired knowledge about facts and
events has been establishing an important role regarding human development. However, for
every individual, there is a unique perception of the universe they are living in. Therefore,
artifacts made for knowledge storage and representation purposes, showed up in several
different arrangements, influenced by many cultural, geographical and temporal factors, which

is completely surmised.

However, on the 21% century, the exponential growth of technology, led the world facing
a myriad of information coming from multitudinous sources. Then, finding ways of storing

knowledge committed to certain rules became imperious.

Given this scenario, this work presents a brief explanation on Knowledge Organization
Systems (KOSs) and how they showed up during the last centuries. An instance of a KOSs class
are the ontologies, which have been playing an important role on, for example, making the
semantics of the real world connected to data, data in which, without such ontological
commitment, could be interpreted as representations of different entities than the one it is,

leading to biased analysis and inaccurate prediction on data-driven projects.

This study will, based on works showing the benefits of bringing ontologies to the
scenario of Data Science, make an application of the Human Disease Ontology, so enrichment
on similarity measures, between group of diseases annotated in on Human Disease Ontology
(DO) will be made. The step of collecting data will be done considering the SIVEP-Gripe Data
Set.

Then, an analysis will be made on how better Machine Learning Algorithms can

perform the analysis is made considering semantic rather than just numerical features.

Keywords: Data Science, Ontologies, Disease Ontology, Clustering, COVID-19, Semantic
Similarities.



RESUMO

Desde o comeco da vida humana, o ato de registrar conhecimento adquirido sobre fatos
e eventos, vem desempenhando um importantissimo papel no que se refere ao desenvolvimento
da humanidade. Portanto, cada pessoa tem sua visdo propria no mundo em que estdo inseridos.
Portanto, foram varias as maneiras como artefatos com intuito de representar e guardar
conhecimento, aparecem das mais diversas maneiras, por serem influenciados por fatores

culturais, geograficos e temporais, o que € totalmente esperado.

Portanto, o crescimento exponencial da tecnologia, principalmente no século XXI,
levou o mundo a frente de uma enorme quantidade de informagao, vinda das mais diversas
fontes. Portanto, procurar novas maneias de registrar conhecimento, baseado em certas regras,

tornou-se crucial.

Dado esse cenario, este trabalho fornece uma breve explicacdo sobre Sistemas de
Organizacao de Conhecimento (KOSs) e como eles vém se apresentando nos ultimos séculos.
Uma instancia desse tipo de sistema sao as ontologias, que vem desempenhando um papel
importantissimo em, por exemplo, fazendo a semantica do mundo real vir a se conectar com 0s
dados, dados esses, que sem esse comprometimento ontologico, podem ser interpretados de
diferentes maneiras, como representagcdes de entidades que ndo sdo as reais, tornando analise

sobre esses dados enviesadas e predi¢des ruins em projetos baseados em dados.

Esse estudo entdo, baseando-se em outras produgdes cientificas que explicitam os
beneficios de trazer as ontologias ao mundo do Data Science, fard uma aplicagao da Human
Disease Ontology, de tal maneira que sera feito o enriquecimento semantico em medidas de
similaridades entre grupos de doengas da ontologia em questdo. A etapa de coleta de dados sera

feita usando a base de dados do SIVEP-Gripe.

Assim, uma analise de como algoritmos de aprendizado de maquina podem melhorar
sua performance quando considerado a semantica dos dados ao invés de apenas suas variaveis

categdricas e numeéricas.



Palavras-chave: Ciéncia de Dados, Ontologias, Disease Ontology, Clustering, COVID-19,
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1 Introduction

In December 2019, the first case of coronavirus disease (COVID-19), caused by the SARS-
CoV-2 virus, was reported. It did not take long for the disease to get enormous proportions and
become a worldwide concern, and on March 11%, 2020, the World Health Organization (WHO)
declared the disease outbreak a global pandemic (WHO, 2020).

By April 17,2022, there have been already more than 6 million COVID-19 fatal cases and
more than 504 million confirmed cases (Our World in Data, 2022) worldwide. Thus, a sudden
appearance of an overwhelming amount of data for research and analysis occurred at an
unprecedented rate, coming from a myriad of public and private institutions. However, the
coexistence of semantically divergent and non-explicit definitions for data from distinct
countries and periods that are being integrated and analyzed make the conclusions of such
analysis and the extracted knowledge potentially questionable. The problem related to data
coexistence (i.e., data coming from different sources) refers to situations in which data seems
to represent the same concept at first sight but, when analyzing with a semantically aware

approach, may represent different concepts of the real world.

In the pandemic scenario this is not different. Since the disease is affecting the four corners
of the world, data comes from a thousand-and-one different data providers. Therefore, data
integration in the COVID-19 domain can be compromised and semantic commitments shall be
considered when treating pandemic data. As an illustration, in China, from Jan 15 until March
2, 2020, there have been seven different versions of the COVID-19 case definition issued by
the government, and Tsang et al. (2020) estimate that the lack of a temporal consensus on the
definitions led China official pandemic tracking to increase up to 7.1 times (IC 95%, 4.8 —10.9)

from one definition to another.

One of the main purposes of ontologies is to make the real-world data semantics explicit
(Guizzardi, 2020); consequently, many benefits can be extracted by this kind of artifact,
including its use as a communication artifact among different stakeholders, as a common data
model to mediate data integration and access, or even as a formal specification to enable
reasoning on data. In the COVID-19 domain, several works already proposed ontologies and

applications (Babcock et al., 2021)(Wan et al., 2021)(Wu et al., 2021)(Sargsyanet al., 2020).



Maddalena and Baido (2021) proposed OntoCOVID, a domain ontology well-founded in the
Unified Foundational Ontology (UFO) (Guizzardi et al., 2021). OntoCovid aims on making
explicit semantical divergences in the COVID-19 case definition from two important health
organizations, the World Health Organization (WHO) and the European Centre of Disease
Prevention and Control (ECDC).

Recently, the multiple benefits of ontologies (including foundational ontologies,
conceptual models, and other semantically aware artifacts) to enhance data analysis and
knowledge extraction have been increasingly advocated. In this context, Amaral et al. (2021)
present how ontologies, and specifically foundational ontologies, can have multiple benefits on
every step of the internal cycle of the Data Science Life Cycle, while Maas and Storey (2021)

show the benefits of pairing conceptual models with ontologies.

The present work focuses on data regarding the comorbidities (i.e., diseases) of patients
who have been diagnosed with COVID-19 and were hospitalized in the state of Rio de Janeiro.
The main objective is to analyze the impact of a semantically aware approach when finding

similar subsets of hospitalizations in the dataset.

To this end, we apply a partition-based clustering technique and compared its results in
two scenarios. The first scenario (semantic unaware) represented each hospitalization as a
binary vector of comorbidities and applied the conventional cosine similarity metric. The

second (semantic aware) scenario was proposed as follows.

During Data Pre-Processing step we matched each comorbidity found in the dataset with a
corresponding concept in the Disease Ontology (DO) (Schriml et al., 2018). A total of 161
distinct diseases were linked to DO concepts, and we observed 465 different combinations of

diseases, for all the patients in the dataset.

To compute similarities between individual comorbidities, we applied the measure
proposed by Wang et al. (2004), which addressed semantics to find similarities between data,
and specifically proposed a similarity metric in the bio-ontologies domain using DO terms.
However, since each hospitalized patient was characterized by a (possibly empty) set of

comorbidities in the dataset, the similarity between distinct hospitalizations required a



groupwise similarity metric, i.e., measuring the similarity between two different groups of
diseases, which represents the diseases a COVID-19 hospitalized patient has. For instance,
while the pairwise metric performs a comparison between two terms such as “diabetes” and
“asthma”, the groupwise similarity metric compares two sets of terms, such as “Diabetes,
gilbert’s syndrome and flu” and “Psoriasis and AIDS”. Therefore, we applied the metric
proposed by Mabotuwana et al. (2013) for calculating groupwise similarities between sets of
DO terms. Mabotuwana et al. (2013) calculates groupwise similarities between terms on the

SNOMED CT'.

Hence, the semantic aware groupwise similarity between hospitalizations proposed in our
work was computed by combining the groupwise metric of Mabotuwana et al. (2013) with the

pairwise similarity between DO terms of Wang et al. (2004).

The impact of the proposed semantically aware approach when finding similar subsets of
hospitalizations in the dataset is assessed in the Data Post-Processing step using metrics of
cluster quality. An additional analysis was performed to show how well the resulting clusters
from each scenario partitioned the subsets of diseases. Figure 1 displays each methodology used

on the different steps of this work.

Data Collection ——-» Data Mining St Daie PC'.St'
processing Processing.

SIVEP-Gripe Bata Traatmart K-Medoids Silhouette Score
Database Clustering Analysis
Semantically-
Aware Similarity Dimensionality
Calculation Reduction

Semantically-
Unaware Similarity
Calculation

Figure 1: Resources used, and methodologies applied in each step of the study.
Source: Author

' SNOMED CT (The Systematized Nomenclature of Medicine Clinical Terms) is a comprehensive and
multilingual clinical healthcare terminology, available at https://www.snomed.org/snomed-ct/why-snomed-ct



The remainder of this work will be organized in the following sections: Section 2 explains
what Data Science and the Life Cycle of projects in this context. In section 3, semantics and
ontologies are explained by firstly introducing artifacts which have been used for organizing
knowledge. In section 4 more detailed explanation on how semantical awareness is imperious
on the Data Science Life Cycle. Section 5 shows how each step of the Data Science Life Cycle
was applied on data referring to COVID-19 hospitalizations in Rio de Janeiro and how an
ontology may have been used. Findings of the research are show on Section 6. Conclusion and
future works are detailed on Section 7. Finally, on Section 8, the bibliography which supported

this research is listed.



2 Data Science and its Life Cycle

Drew Conway (2013) proposed that Data Science (DS) is the intersection of three different
skills: hacking skills, mathematics and statistics knowledge and substantive expertise, this

representation is represented by the Venn Diagram shown on Figure 2.
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Figure 2: The Data Science Venn Diagram. Source: Conway (2013)

Math and statistics knowledge and hacking are undoubtedly critical skills for defining
the success of a Data Science project. However, substantive expertise skill is often undervalued,
leading to biased analysis and, thus, impacting negatively on decision-making. Therefore, this
research proposes, inspired on both works of Amaral, Baido and Guizzardi (2021) and Mass et
al. (2021), to make use of the benefits of conceptual modeling and ontologies on better problem

understanding and other steps of a Data Science Project.

Also, Machine Learning play a fundamental role on Data Science projects, according to
Taeho Jo (2021): “The machine learning (ML) is defined as the computation paradigm where

the capacity for solving the given problem is built by previous examples”.

Machine Learning systems can be either supervised or unsupervised. In the first case,
the algorithm learns from labeled data, also called training set, so the machine can predict the

label of unlabeled data. On the other hand, in unsupervised learning data is unlabeled, and the



algorithm aims to learn patterns based on data characteristics, usually the similarity between
dataset instances. Example Machine Learning techniques that apply supervised learning are
classification and regression, while unsupervised learning is used in clustering and association

rules learning techniques (Han and Kamber, 2012).

Mass et al. (2021) cites different proposals for Data Science methodologies, including
the ones by Kurfan and Musilek (2006), Shmueli and Koppius (2011), Chambers and Dinsmore
(2014) and Goodfellow et al. (2014). Nevertheless, Shcherbarkov and Brebels (2014) proposes
Lean Data Science Research Life Cycle, pairing the key principles of Lean Development, which
came from Toyota Company to the Data Science Life Cycle and serves as the basis for our

work.

The Lean Dara Science Research Lifecycle is divided in six steps, as in Figure 3: (1)
Problem Understanding (Ask the right question), (2) Getting the Data, (3) Internal cycle of data
science research, (4) Visualization of results, (5) Create actions based on results and (6)

Feedback out of actions.

] 2]

Getting the Data

Problem Understanding
(Ask the right question)

Feedback out of actions Internal cycle of data science
research

H Bl

Visualization of results

Create an actions based
on results

Figure 3: Steps of lean data science research lifecycle. Source: Shcherbarkov and Brebels
(2014)

1. Problem Understanding: Asking the right questions will better guide the project cycle,
helps defining adequate type of data to be analyzed and computational and statistical

methods further applied.



2. Getting the data: Data Science must live up to its name, therefore getting the right data
is a crucial step on the project cycle. Also, the definition from Mealy G. (1967) that
“data are fragments of a theory of the real world” suggests that data can be represented
in several ways. Indeed, the real world is complex, and each individual has its own
vision regarding reality. Hence, data must be carefully collected, considering which
theory in the real world it represents. Also, data may come in many different formats,
such as tables in CSV files, or as unstructured files such as photos and audio files and
may be provided by different sources, such as internal data sources and external data

sources Shcherbarkov et al. (2014).

3. Internal cycle of data science research: This step is mainly about data treatment,
analysis, and application of Machine Learning (ML) models, which can be further

divided in the three steps:

3.1 Data Pre-processing: During this step, data is analyzed so its properly manipulated
and transformed; and therefore, better consumed on the Data Mining step. Such task
is important because datasets in the real world is often corrupted i.e., has missing
values and outliers?> due to human errors, hardware failures, etc. There are several
ways to tackle these issues, such as imputation of mean or median values, for
example. Data elimination is also used for dealing with outliers and missing values.
Also, data, depending on how it will be consumed during the project lifecycle, can
carry unnecessary features, and leak important ones. Thus, feature selection and
feature engineering consist of techniques aiming to solve these issues. In the case of
unwanted features, basic elimination i.e., feature selection can be made. When facing
lack of features, the second step on the lifecycle can be revisited so more data can be
integrated, but also new features can be computed from the existing data, by
calculating arithmetic and other statistical operations and therefore generate more
useful data for the problem to solve, that would be the feature engineering case.
Finally, data dimension (a.k.a. number of feature/variables) can be reduced by using

techniques such as Principal Component Analysis (PCA) (Pearson, 1901), Uniform

2 Qutliers are mainly considered result of corrupted data. However, they can be useful
information for fraud detection studies (Kou et al., 2004).



3.2
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Manifold Approximation and Projection (UMAP) (Mclnnes et al., 2018) and
Multidimensional Scaling (Kruskal et al., 1964) which are also considered feature

engineering/extraction techniques.

Data Mining: During this step, computational, mathematical, and statistical
techniques are used, so knowledge can be obtained from the data. Supervised ML
algorithms, such as classification, represented mainly by neural networks, decision
trees and logistic regressions, plays an important role on discovering important data
features to predict another feature. Often, when applying the mentioned algorithms,
revisiting Data Pre-Processing step can occur, so data can be again manipulated and
transformed, enhancing accuracy, sensibility, precision, and specificity of predictors.
Also, unsupervised ML algorithms are widely applied on many DS projects, it is often
represented by Clustering techniques, which is “the process of partitioning a set of
data objects (or observations) into subsets. Each subset is a cluster, such objects in a
cluster are similar to one another, yet dissimilar to objects in other clusters” (Han et
al., 2011). Since clustering relies on grouping data objects based on their pairwise
(dis)similarities, such as Euclidian distance, Manhattan distance, revisiting Data Pre-
Processing step may be needed to compute such kind of metric. Also, as data
dimensionality increases, the identification of patterns become less trivial (the curse
of dimensionality), therefore clustering aims to tackle this issue by resuming large

amount of data into similar groups (Marmanis et al., 2009).

Data Post-Processing: Consists in interpreting patterns, information and other results
obtained during Data Mining process, evaluate the quality of these results,
considering the existence of biases, false correlations and maybe revisiting the
previous step for retraining the selected model. In the case of clusters, the
performance can be evaluated with the help of some metrics, such as Silhouette

Coefficient (Rousseeuw, 1986).

4. Visualization of Results: This step can be done on the three following types: (1)

Visualization of results as the initial point for decision support, (2) Visualizing the
results of comparison with baselines or benchmark models and (3) Visualizing the

information regarding the Data Mining process (Shcherbarkov and Brebels, 2014). Data



visualization. There are several methods of data visualization, each one for a certain
purpose. For instance, pairwise dissimilarity can be represented by heatmaps, high-
dimensionality data through scatter plots, with the help of dimensionality reduction
techniques, and also the creativity on assigning visual artifacts so more information can

be represented in a single and lean chart.

5. Creating Actions Based on Results: The results provided by the previous steps can be
either considered a positive outcome or a negative outcome, on the first case, actions
may be performed based on research results and, on the second case, Data Mining step

may be revisited, restarting the cycle (Shcherbarkov and Brebels, 2014).

6. Getting Feedback from Action: Consists of the evaluation on how the obtained results
were useful and trustful for the end-user and the decision maker. Using Key
Performance Index (KPI) can be used to measure how the results impacted on the

decisions made (Shcherbarkov and Brebels, 2014).

This work will focus on the first four steps of the described lifecycle, more specifically on
the Internal cycle of data science research, where machine learning techniques will address

domain semantics through the use of ontologies.



3 On Semantics and Ontologies

Knowledge Organization Systems (KOSs) are artifacts for organizing information and to
explicit knowledge. There are several types of KOSs, Pieterse et al. (2014) classify these

artifacts according to their complexity, as shown on Figure 4.

Thesaurus Ontology

List Taxonomy

Complexity

Concepts Concepts Concepts Concepts Concepts
Hierarchical relations Format hierarchical relations Hierarchical relations Formal hierarchical relations
Associative relations Formal associative relations

Inference rules

Figure 4: Classification of KOSs, Source: Pieterse et al. (2014)

According to the authors, a list is the least complex artifact to organize knowledge, it
provides a linear structure of related things, together with some descriptions and/or properties
owned by these things. Taxonomies are more complex structures than lists, due to the
hierarchical relations representation (for example order is subcategory-of class), and biologists
for years have been representing their knowledge about living organisms through taxonomic,
such as the famous hierarchy proposed by Linn¢ C. (1767) which described nature information
with his book “Systema naturce per regna tria naturce, secundum classes, ordines, genera,
species, cum characteribus, differentiis, synonymis, locis”, which is translated to “System of
nature through the three kingdoms of nature, according to classes, orders, genera and species,
with characters, differences, synonyms, places”. In Pieterse et al. (2014) classification, “A
lattice is a hierarchically organized collection that contains items and their attributes in which
these items and their attributes are formally presented as a concept lattice”. Thesaurus is a KOS
that allows specification of the attributes of items as well as their equivalences, hierarchies,
associations and/or contrast semantic relations between items. For example, Wordnet (Miller,
1995) (Fellbaum, 1998) is a thesaurus frequently used in several domains, and defines, for
instance, that “head is-part-meronym of human-body” and that “disease is associated to
illness through the has-sister-term relation”. Finally, there are the so-called ontologies which,
according to this classification, is the class of KOSs carrying more complex formalizations

about knowledge on the domain of discourse, such as axioms, properties, associations of



concepts. For example, the Human Disease Ontology (DO) specifies an axiom stating that
causes-or-contributes-to-condition is SubPropertyOf casually-related-to. There are many
ontologies being developed in several domains, and particularly in the biology domain (Bard et

al., 2004).

Guarino (1997) suggests ontologies are classified in four different kinds, with respect

to their level of generality, as shown on figure 5 below.

top-level ontology

TING

+ S

domain ontology task ontology

~

application ontology

Figure 5: Abstraction levels of ontologies. Source: Guarino (1997)

According to Guarino (1997), top-level (or foundational) ontologies are the ones
describing very general concepts, like space, time, matter, object, event, action etc., and the
Unified Foundational Ontology (UFO) (Guizzardi, 2021) and the Basic Formal Ontology
(BFO) (Arp et al., 2015) are examples of such kind of ontology. Domain and task ontologies
describe, respectively, the vocabulary related to a generic domain (ex: Diseases) or a generic
task (ex: Diagnosis), such descriptions are made by specializing concepts on a top-level-
ontology. Lastly, application ontologies specialize the concepts of domain and task ontologies

for describing conceptualizations in specific application contexts.

In this research, we make use of the Human Disease Ontology (DO), a domain ontology
organized as a directed acyclic graph, representing the domain of ontologies and is mapped to

uncountable others application ontologies.



DO makes the knowledge on the domain of human diseases explicit, by describing diseases
through ontology properties, such as is-a, has-material-basis-in or has-symptom. For instance,
DO states that:
bone disease is-a connective tissue disease
congenital megabladder ias-material-basis-in autosomal dominant inheritance

allergic conjunctivitis sas-symptom allergic reaction.

The Human Disease Ontology, in its last update on April 28", 2022, comprises 17,840
classes and 45 properties (BioPortal, 2022) and is widely applied for several purposes in
Academic and Industry contexts. In addition, it has been used by more than 50 other biomedical
ontologies and there is a numerous list of software tools and other web resources that: (1)
support the use of DO data, (2) have integrated or were built using DO data, or (iii) provide
data linkages to the DO website (Disease Ontology, 2022).



4 On the Benefits of Semantics, Ontologies and Conceptual Modeling in the

Data Science Lifecycle

Managing data cannot be accomplished solely by humans with their limited cognitive
capabilities (Mass et al.,2021). Also, available data keeps growing and is becoming more
important as a resource for decision-making. Thus, it is crucial to understand the domain which

the data represents, to make a more precise usage from it.

Mass et al. (2021) and Amaral et al. (2021) show that pairing conceptual
modeling/ontologies artifacts with data science/machine learning techniques can not only
enhance Data Science projects results but also support the development and evaluation of
conceptual modelling approaches. However, this work will focus on the first mentioned kind

of benefit, when semantical commitment helps on Data Science Projects.

In particular, Amaral et al. (2021) defend the benefits of using foundational and domain
ontologies appears in each cycle of the Data Science Life Cycle, including Problem
Understanding, Data pre- and post-processing, and Data Mining for different techniques

(Classification and Clustering, for example). Such benefits are summarized on Table 1.

Problem Understanding, as aforementioned on section 2, relies on asking the right
questions, so problems can be correctly solutioned. Ontologies can serve as a tool for this DS
Lifecycle step. Indeed, ontologies can serve as tools by providing better understanding of the
domain referring to the problem. Moreover, many methodologies of ontology engineering, such
as SABiO: Systematic Approach for Building Ontologies (SABiO) (Falbo, 2014), takes as a
step defining competency question i.e., natural language questions outlining and constraining
the scope of knowledge represented in an ontology (Wisniewski, 2019). Such commitment of
ontologies with competency questions may lead to the right answers during the problem

understanding step.

On the Data Pre-processing step, Amaral et al. (2021) defend ontologies could help on both
on semantic interoperability and ontological commitment made explicit. These benefits refer to

data integration which can be made not considering the ontological commitment of the sources



providing the data and, therefore, joining data features which refers to different entities of the

real world, leading to misinterpretations and false results on the DS project.

When clustering data, relying on foundational ontologies may lead to cluster results better
reflecting real-world categorization. Moreover, calculating pairwise data similarity committed
on ontological foundational can lead to similarities between data way more befitting to the

domain where the treated data lays on.

DS Lifecycle step Benefit
Semantic transparency

Problem understanding  Complexity management mechanisms for complex domains

Data models are more uniform

. e i
Data pre-processing Semantic interoperability

Ontological commitments made explicit

Classification Systematic guidance in the development of classifiers

Increasing classification precision

Higher probability of clusters that reflect genuine real-world

categorizations

Clustering Similarity calculation grounded on ontological foundations
Easier to identify similarities that are not accidental
Preventing unwarranted associations

evaluation

Improved understanding of the patterns discovered
Data post-processing Systematic guidance in the validation of the patterns discovered

grounded on ontological meta-properties

Table 1: Multiple Benefits of Foundational Ontologies and Domain Ontologies on Data
Science. Source: Adapted from Amaral et al. (2021)

Traditional data mining methods and techniques treat data as merely “sums of attribute
values”, and such approach can lead to biases and bad understanding of the patterns discovered
(Amaral et al., 2021). Indeed, Clustering techniques mostly relies on calculating similarities —
a data pre-processing step — which does not consider semantical attributes and are basically
mathematical operations to calculate Euclidian distance and other kind of metrics. However,
there have been for the past few years many proposals of considering ontologies on the
calculation of object similarities, such as: Gilbert et. al (2013) and Lee et al. (2008). Also, on
the biomedical field, especially for Gene Ontology (GO) (Ashburner et al., 2000; Gene

Ontology Consortium, 2021), there are several similarity metrics considering many different



ontologies, such as: Wang et. al (2004), Jiang and Conrath (1997), Resnik (1999) and Lin
(1998). However, the metric proposed by Wang can also be extended for comparison between

DO terms.

In this research scenario, ontologies will show up as a tool on the Data Pre-Processing
step of de Data Science Life Cycle and, therefore, may enhance analysis results. The ontology
terms (diseases) and taxonomic relations (is_a) will be considered when computing similarities
between group of comorbidities, since each comorbidity is linked to a disease in the Disease
Ontology. Similarities should be calculated following a groupwise approach, to enable a
comparison between two groups of comorbidities. Pairwise similarities may be trivially
computed by a simple application of a distance metric, either one of the four last mentioned
metrics or any of the metrics available in HESML (Half-Edge Semantic Measures Library)
(Lastra-Diaz et al., 2017).

Semantic aware groupwise metrics, however, are not that simple. According to Lastra-Diaz
et al. (2017), “A groupwise semantic similarity measure is used to compute the degree of
similarity between two sets of concepts defined into an ontology. This type of measure is
commonly used to compare sets of GO terms in genomics, although they could also be used to
compare sets of WordNet synsets evoked by two words”. Section 5 details the approach used

to calculate DO terms groupwise similarities.



5 Semantically Aware Data Science Life Cycle: Applying the Disease
Ontology on Clustering COVID-19 Hospitalizations Data

5.1 Associating comorbidities to diseases in the Disease Ontology

We analyzed the dataset from SIVEP-Gripe (Sistema de Informagdo de Vigilancia
Epidemiologica da Gripe), a nationwide surveillance database used to monitor severe acute
respiratory infections in Brazil®. Each instance of such database represents a hospital admission
due to COVID-19, characterized by several features related to the hospital where the patient
was admitted, to the case evolution (Death or Recovery), to the patient vaccine administration,

along with other features that were out of the scope of this work.

However, this dataset contains a lot of imprecise and missing data, mainly on data
referring to the patient comorbidities, which this work aims to tackle. Hence, data selection

followed a semantic aware methodology, described as follows.

Data Selection was made by filtering the first three thousand hospitalization of 2021 in
the State of Rio de Janeiro. However, since this work will rely mostly on analyzing each patient
set of comorbidities, the filtering also considered instances of data with noisy, inaccurate and
missing information regarding this feature. Also, since this study focuses on the pairing of
ontologies to the Data Science Lifecycle, rather than discovering new patterns, we did not

prioritize analyzing larger datasets.

Patient comorbidities which appeared in the dataset were then mapped to the ontology.
Each comorbidity on the dataset was associated with a DO disease. This step was performed
manually, by searching for DO classes whose names were syntactically similar to the

comorbidity name appearing in the dataset. Some of these associations can be seen on Table 2.

For example, if a hospitalization entry on SIVEP-Gripe dataset has, for instance, the word

“DPOC” (short for Doen¢a Pulmonar Obstrutiva Crénica in Portuguese) in MORB_DESC

3 DATASUS Ministry of Health, SRAG 2020 - severe acute respiratory syndrome database - including data from
COVID-19. Surveillance of severe acute respiratory syndrome (SARS).
https://opendatasus.saude.gov.br/dataset/bd-srag-2020




column, we consider the patient has “Chronic Obstructive Pulmonary Disease”, which has the
ID DOID:3083 in the DO.

Name on SIVEP-Gripe Databae DO Match
ALCOOLISMO alcohol use disorder
ALZHEIMER Alzheimer's disease
AMILOIDOSE amyloidosis
ANEMIA deficiency anemia
ANEMIA CRONICA deficiency anemia
ANEURISMA DE AORTA ABDOMINAL |abdominal aortic aneurysm
ANOREXIA NERVOSA anorexia nervosa
ANSIEDADE generalized anxiety disorder
ARTRITE arthritis
ARTRITE REUMATOIDE rheumatoid arthritis
ARTROSE osteoarthritis
ATAQUE ISQUEMICO TRANSITORIO |[transient cerebral ischemia
AVC cerebrovascular disease

Table 2: Disease matching between SIVEP-Gripe names with DO terms. Source: Author

Hospitalization information regarding comorbidities of a patient is represent either by Boolean

variables or by a free text field.

5.2 Calculating (dis)similarities between DO terms

There are several ways to calculate pairwise similarities between classes in an ontology.
In this work, Wang et al. (2007) proposed to measure semantic similarity among DO terms. For
computing such metric, Wang defines a term A in DO as DAG, = (A, T4, E4), where T, is the
set of all ancestors in DO graph and Ej is the set of edges connecting DO terms to A. The S-
Value of DO term t related to term A is defined as the contribution of t to the semantics of A,

such that, for any t in DAG,, its S-value related to term A is defined as:

Lift=A
max{w, X S,(t")|t" € children of (t)}, otherwise

Sa(t) = {

However, w, is a value representing the semantic contribution factor for edge e € E,
linking term t with its child t’, thus for every e, a corresponding weight w, may be predefined.
Wang similarity measure for DO terms only considers is-a relationships, and the corresponding

weight w, is preset to be 0.7.



Also, for a given term A, the total semantic contribution of A, SV(A) in DAG, is

computed as follows:

V) = ) Su(®

teA

Hence, for any pair (4, B) of DO terms, Simyy 4,4 (A, B) can be computed as follows:

Yter urg(Sa(t) + Sp(t))
SV(4) + SV(B)

SiMyang (A, B) =

For computing such metrics, the R software package DOSE (Yu et al., 2015) was used,
which is part of the open-source software for bioinformatics Bioconductor. Figure 7 shows a
heatmap representing pairwise similarities among some DO terms. For instance, let 4 a vector

of DO terms as follows:

A
= (D0ID:8398,D0ID:409,D0ID:2841,D0ID:850,D0ID:2914,D0ID:7148,D0ID: 8857)

The six terms on vector A represent, respectively, the diseases in the following set:
(osteoarthritis, liver disease, asthma, lung disease, immune system disease, rheumatoid

arthritis, lupus erythematosus). We define a matrix S, such that the value on position Sy, A;

represents the similarity Simy,qn4 (4;, A;), with the graphical representation on Figure 6.

Also, Figure 6 displays where in the ontology the terms on vector A are placed, with
respect to their relationships and hierarchies between other terms. Moreover, the relationship
has-subclass 1s equivalent to is-a in the way that, if A is-a B, then B has-subclass A, such figure

was made on Graphviz.*

4 https://graphviz.org/
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Figure 6: Graph representing path-to-root concepts of six diseases in DO. Source: Author
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Figure 7: Pairwise similarities between DO terms. Source: Author

As can be seen on Figure 7, rheumatoid arthritis has a high similarity with
osteoarthritis because both diseases have a relationship is-a (or, is-subclass) with arthritis.

Also, since rheumatoid arthritis is-a autoimmune disease of musculoskeletal system



together with lupus erythematosus, such DO terms have higher pairwise similarity when

comparing lupus erythematosus with osteoarthritis.

Figure 8 illustrates a heatmap representing Wang pairwise dissimilarities between all

161 diseases.
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Figure 8: Heatmap Displaying Wang Pairwise Dissimilarities Between 161 DO Terms.
Source: Author

5.3 Calculating Groupwise (Dis)similarities

Each row in the hospitalizations dataset represents a hospital entry, which refers to a
unique patient. As aforementioned, each entry contains data about the diseases a patient has.
Hence, each instance on the dataset is characterized as a single group of DO terms. With the
previous definitions, only pairwise similarity metrics between classes in the ontology can be
computed. Then, for calculating similarities between set of diseases i.e., groupwise similarities,

other approaches were required.

For instance, consider an ordered set D containing n terms from DO, and an example

instantiation of D in which n = 4:



D = {lupus erythemathosus, rheumatoid arthritis, liver disease, asthma}

Also, let D' € D the subset representing the diseases a patient suffers, and an example
instantiation of D'

D' = {rheumatoid arthritis, asthma}.

Any subset of diseases in D may be a represented as a document vector v, i.e., a n -
dimensional binary vector, in which each coordinate represents if the concept of D is in D'
Thus, in John’s case, vT = (0 1 0 1). This representation is useful and broadly used in
Natural Language Processing models and some machine learning techniques that rely on

similarity measures between instances of data.

5.3.1 Cosine (Dis)similarity

Considering x,y vectors in the n-dimensional space, cosine similarity between these

vectors is represented as:

Xy

GSimcoS(x' y) - W”y”

The operation x -y represents the usual R™ inner product and ||x|| represents the

Euclidian magnitude of a vector x € R".
Also, this similarity metric follows the following property:
V(x,y) ER" X R™:0 < GSim o, (x,¥) <1
So, the cosine dissimilarity may be defined as:
GDSimeos(x,y) = 1 = GSimeos(x,Y)

Even though this metric represents, at some way, groupwise disease similarities,

ontologies are not considered as semantical enrichment artifacts. Therefore, according to



Amaral et al. (2021), data mining techniques relying in these metrics may lead to less genuine

understanding of patterns discovered, due to the lack of semantics.

To tackle this, next section provides an ontologically well-founded (dis)similarity metric
that may be considered as an extension of the original cosine similarity and is inspired on

Mabotuwana et al. (2011) work, which applies the metric on the domain of radiology.
5.3.2 Semantically Aware Cosine (Dis)similarity

For introducing semantic similarity between document vectors, Mabotuwana et al. (2011)
first define (in their words, in a loosely way) the similarity between two concepts €1, C2 in an

ontology as:

1
Sim(C1,C2) = pl

Where d is the number of nodes in the shortest path between concept nodes (inclusive
of) C1 and C2. However, the authors clarify that other similarity measures can be used, as long
it preserves the basic property that increasing distance within the ontology is concomitant with
a decrease in semantic similarity. Hence, the similarity measure defined by Wang et al. (2007)

for DO terms will be used:
Sim(C1,C2) = SiMmyang (C1,C2)

Henceforward, each term of the domain ontology brought up by the dataset, together
with all the other concepts in their paths-to-root (a.k.a. seed concepts), will represent each
coordinate of the document vectors which will be further analyzed. However, Wang pairwise
similarity measure already represents the weight of seed concepts in its formula. Hence, in this
work, only the Disease Ontology terms presented on the explored dataset will be considered,

and such group of diseases will be represented as a set C, called context set.

Finally, with the definitions above, the DO terms groupwise similarities,

GSiMyang(A,B), with respect to a context can now be computed. Hence, let C =

{C,,Cs,, ...,C,} be a set of diseases representing the context set and let two group of disease



terms, namely, A and B, which by definition, A,B € C. Then, we can the desired metric

formula is represented below:

ZCECO(AUB) max SimWang (a,c) - max SimWang (b, c)
GSiMyang (A, B) = acd bep

2 2
\/ZceCnA (rgg} SimWang (a, C)) ) \/Zce(,’nb (rglg} SimWang (b, C))

Also, this similarity metric ranges from 0 to 1, therefore, dissimilarity is easily

derived, such that:
GDSimygng(A, B) =1 — GSimygng4(A, B)

For instance, let’s calculate the similarity between group of DO terms for context C, as

in Table 3:

asthma liver disease  lung disease  immune system disease rheumatoid arthritis
A = {asthma, liver disease} 1 1 0.65 0.36 0.13
B = {rheumatoid arthritis} 0.084 0.13 0.13 0.26 1

Table 3: Values for computing DO terms groupwise similarities

Now, similarity between groups of diseases A and B is calculated as follows:

GSimyyang (A, B)

_ (1-0.084) + (1-0.13) + (0.65 - 0.13) + (0.36- 0.26) + (0.13- 1)
V1Z+ 12 + 0.652 + 0.362 + 0.132-/0.084% + 0.13% + 0.13% + 0.262 + 12

GSimyyang (4, B) = 0.1824

Therefore, in this work, both groupwise dissimilarities were calculated to support on the
Clustering during Data Mining Step. Figure 9 showing how smooth dissimilarity is when
enriching data with semantics, while semantically unaware measures lead to false
dissimilarities between data objects, which potentially may impact on further mining and

analysis activities.
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Figure 9: Heatmaps of groupwise dissimilarities using

semantically unaware (left) and semantically aware (right) metrics. Source: Author

5.4 Clustering hospitalizations

Han et al. (2000) defines Clustering as the process of grouping a set of data objects into
multiple groups or clusters so that the objects within a cluster have high similarity but are very
dissimilar to objects in other clusters. Euclidian and Manhattan distance are often used as
dissimilarity measure on clustering techniques. However, in this study, clustering analysis will
rely on both cosine similarity and cosine similarity based on the prior mentioned Wang

measure.

Clustering can be defined as an unsupervised machine learning algorithms and many
approaches have been proposed for the last decades. Fahad et al. (2014) suggests that clustering

methods are divided in five different types as shown in Figure 10.



Clustering Algorithm
Partitioning-Based Hierarchical-Based Density-Based Grid-Based Model-Based
[ [ [ I I
1. K-means
2. K-medoids 1. BIRCH 1. DBSCAN 1. Wave-Cluster 1. EM
3. K-modes 2. CURE 2. OPTICS 2. STING 2. COBWEB
4. PAM 3. ROCK 3. DBCLASD 3. CLIQUE 3. CLASSIT
5. CLARANS 4, Chameleon 4, DENCLUE 4. OptiGrid 4. SOMs
6. CLARA 5. Echidna
7. FCM

Figure 10: Types of clustering algorithms. Source: Fahad et al. (2014)

This work focuses on the use of the K-medoids clustering technique (Park et al.,2009),
which is a Partitioning-Based clustering algorithm that is scalable and compatible to cluster

objects upon precomputed dissimilarity metrics, which is the case of the data in this study.

Also, for choosing clustering algorithm parameters (such as the number of clusters) this
work relies on the Silhouette Coefficient (Rousseeuw, 1986) as a metric which we want to
maximize. Such metric, based on the intra-cluster and extra-cluster distances, provides
information regarding the quality of the clusters. However, other techniques such as Calinski-
Harabasz Index (Calinski, T., & Harabasz, J., 1974) and Davies-Bouldin Index (Davies, David

L.; Bouldin, Donald W., 1979) can be used to evaluate performance of clusters.

K-medoids algorithm, according to Park et al. (2009), relies on three steps and in the

case of this work follows the algorithm of Figure 11.

Step 0: Let X = (X4, X>, ..., X;;) a vector of points in the dataset (a.k.a. sets of DO terms) and
let k(k < n) a pre-defined number of clusters.

Step 1: (Select initial medoids)
I-1.  Calculate the distance between every pair of objects on the chosen similarity, so
dij = GDSimyqng(X;, X;) when  considering semantics and d;; =
GDSim,s(X;, X;) when using the usual cosine dissimilarity measure.

1-2. Calculate v; for object j as follows:



1-3. Sort v;’s in ascending order. Select k objects having the first k smallest values
as initial medoids.
1-4.  Obtain the initial cluster result by assigning each object to the nearest medoid.

1-5.  Calculate the sum of distances from all objects to their medoids.

Step 2: (Update medoids)
Find a new medoid of each cluster, which is the object minimizing the total distance to
the objects in its cluster. Update the current medoid in each cluster by replacing with

the new medoid.

Step 3: (Assign objects to medoids)
3-1.  Calculate the sum of distances from all objects to their medoids.
3-2.  Calculate the sum of distances from all objects to their medoids. If the sum is

equal to the previous one, then stop the algorithm. Otherwise, go back to step 2.

Figure 11: K-Medoids Clustering Algorithm. Source: Park et al. (2009)

Notice that K-medoids predefines the number of clusters k and depending on the desired
result, different techniques may be applied. In this case, Silhouette Coefficient maximization is

applied and further explained on next section.

For making use of such algorithm, Scikit-learn (Pedregosa et al,, 2011) implementation

of K-Medoids on Python programming language (van Rossum et al., 2009) was used.

5.5 Clustering evaluation

To analyze clustering results, this study will rely on Silhouette Coefficient, proposed by
(Rousseeuw, 1986). This metric, when taking its average, provides an evaluation of cluster
validity and might be used to select an appropriate number of clusters, which is the exact

approach of this study for making such selection.



When constructing silhouettes, two information are needed: the partition obtained by the
clustering i.e., which cluster each data object is placed and the dissimilarities between these
points. That way, let I € {1,2, ..., k}, where k is the number of clusters and let C; be the set of

the cluster I, let i € C; a data points on cluster / and consider

1 .
P

JECLi*#]

a(i) =

as the mean distance between all other possible data instances i in the cluster. |C;| is defined as
the cardinality of the cluster C;. Also, d(i,j) may be defined the distance, which is not

necessarily the usual Euclidian distance. Then, consider

as the minimal mean distance of i to any other point j on the data set. In hands of such

definitions, the silhouette score for a given point i in the dataset is defined by:

1— % ifa(i) < b(i)
s(i) = 0, ifa(i) = b(i)
b(i
\% —1, ifa(d) = b(i)

Given the points i of the dataset and the clusters where each datapoint is assigned, a
point i is well assigned to its cluster if s(i) is a positive value, close to 1, as this score decreases
and turns into a negative value, becoming closer to —1, means { would better be on another
cluster. Also, if s(i) is on the neighborhood of zero, it the datapoint is considered indifferent
regarding its assigned cluster and, would also be appropriate of staying on some neighbor

cluster, implying that the cluster assigned to i is overlapping another cluster.

Computing the mean of the present metric, for all points in a data set, on a Clustering

result is often used as a framework on for choosing this kind of Machine Learning Algorithm



parameter tuning. More specifically, the clustering algorithm is run for different number of
clusters, and for each iteration, the associated average silhouette is stored. So, the number k =
k™ of clusters which maximizes the mentioned metric is selected as the optimal one (Rousseuw,

1997).

Scikit-learn (Pedregosa et. al, 2011) implementation of Silhouette Coefficient was again
used for calculating such metric, it is important to point out the implementation makes possible

using other distance/dissimilarities metrics, which was fundamental for this work.

The average silhouette coefficient was then calculated for each instance of K-medoids
application, on both semantically aware and unaware dissimilarity data and for different
numbers k of clusters, ranging from 2 to 15. As seen on Figure 12, the optimal number of
clusters k = k*, which maximizes the average silhouette score was, on the semantic aware case
was kg, = 5 and on the semantic unaware case was K, em = 5, Where each clustering

obtained, respectively, scores of 0.277108 and 0.12143.
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Figure 12: Comparing average silhouette score for different number of clusters. Source:
Author

However, many times projects applying the DS Lifecycle, may lack on paying attention
on silhouette scores of each single data point and relies on the analysis of just the average score

computed above. Indeed, averages resumes several observations into to a single number. Hence,



analysis on the distribution of this quality score should be made for each cluster and for each

data point.

The obtained results regarding the quality of the clustering on both treated data are in
fact encouraging, semantical enrichment on data benefits on the DS Life Cycle, at least on this
work scenario. The bar plot displayed on figure 13 shows that not only the average silhouette
is clearly higher, but the metric evaluated individually for each data point is clearly higher on
the overall. Also, cluster O of the cosine dissimilarity clustering has mainly negative silhouette
scores. Moreover, when clustering the semantically aware data, the average silhouette score

was higher than 83% (386 out of 465) of the observations on the semantically unaware scenario.
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Figure 13: Bar plot with values of silhouette score for each data point. Source: Author

5.6 Applying Multidimensional Scaling (MDS)

Often, data comes as the results of distances or dissimilarities calculated between points.
For instance, suppose a fictitious dataset containing information regarding all living persons of
the world and their distance between each other. Such scenario would result, based on the

United Nations (2019) estimation for worldwide population, on a dataset containing more than



(7.7 x107)%2—(7.7 x107)
2

~3.0 X 10%5 entries (distances matrix are symmetrical i.e., distance from A

to B is the same as the distance from B to A, for every pair of points).

When considering this kind of data, distance information between points are provided.
However, data regarding the position of points is suppressed. Ergo, position of arbitrary persons
A and B could be, respectively, Duque de Caxias (municipality in Rio de Janeiro, Brazil) and
Mendes (another municipality in Rio), at the same time that there are no constraints forbidding
that A is in Manhattan Island and B is in in Stanford, which are also 50km apart. However, as
data in the supposed dataset increases, the set of possible coordinates for person A gets more

restricted i.e, there are less possibilities when estimating an individual position.

Such elucidation is made, because often on the Data Science Lifecycle, steps face both
high dimensional data and dissimilarity matrices, which is the case of this work. In one side,
this kind of data is useful, because Clustering techniques relies on (dis)similarities, but on the
other dise, data dimensionality becomes quadratically higher as new instances become part of
the dataset. Also, high-dimensional datasets are hard to manipulate since human sensorial
capacities are only able to see the three spatial dimensions. However, more data features (i.e.,
dimensions) can be represented visual tools, such as shapes and colors (usually for categorical

variables) or color ranges (usually for numerical features).

On the Data Science Lifecycle, and as mentioned on the second section, dimensionality
reduction methods can be both applied on Data Pre- and Post-Processing (Xie et al., 2018). In
the first case, such class of technique shows up as a feature extraction tool, which can help ML
algorithms efficiency, by bringing data to lower dimensions, but aiming on the preservation of
data global structure. Such technique can lead to other benefits during Data Post-Processing
sted, the analysis of results obtained, when in lower dimensions, can lead to better

understandings of the information obtained, by improving data visualization.

There are many methods for reducing features on a set of data, as already mentioned on
Section 2, some examples are: (1) PCA (Pearson, 1901), which with the help of robust Linear
Algebra techniques, compress the data but also minimizing information loss; (2) UMAP
(Mclnnes et al., 2018) technique, in its framework relies on algebraic topological and

Riemannian geometry — both advanced mathematical fields — to provide, according to the



authors, dimensionality reduction with better performance i.e., preservation of data global
structures and superior run timing; and also (3) MDS (Kruskal et al., 1964), which is used to
translate “information about the pairwise ‘distance’ among a set of n objects or individuals”
(Mead et al., 1992) such technique could help on determining coordinates to population distance

on earth population example introduced on the beginning of this section.

MSD Dimensionality Reduction on Semantically Unaware Data MSD Dimensionality Reduction on Semantically Enriched Data

0.04

0.24

Figure 14: Approach for Graphical Representation of Difference between Clustering
Techniques

In this work, MDS served well when transforming DO terms groupwise dissimilarity
metrics into points in the cartesian plane, where each point represents a group of diseases on
the ontology. The application of this dimensionality reduction technique helped during data
post-Processing, when dissimilarity got by only two variables, instead of 461. Therefore, both
charts displayed on Figure 14 were possible, it shows the transformed data in the cartesian
plane. Moreover, information regarding both the clustering results and the obtained silhouettes
scores were represented, respectively, by introducing different colors and radius sizes for each

point. Also, for every cluster, the medoid point was represented with a black cross, where it



emerged a box displaying all DO terms presented by the highest 4 silhouette scored group of

diseases of each cluster.

The results shown in Figure 12 are crucial to make explicit how DS results are improved
when adding semantics to data. While on the left chart clusters are overlapping (one more
evidence to explain the low silhouette scores obtained), the one in the right, shows how the
clusters were better separated, thus way closer to the main objective of this technique, which is
to maximize intra-cluster similarities and maximize inter-cluster similarities. Lastly, our results
evidenced the benefit of “Higher probability of clustering results that reflect real-world
categorizations”, exactly as mentioned by Amaral et al. (2021). When comparing both
scenarios, the semantically unaware clusters grouped diseases which are, by common sense,
dissimilar to each other; on the other hand, semantically aware clusters reflected real-world

categorizations, i.e., diseases within the same cluster are clearly more similar to each other.



6 Conclusions

This work proposes a semantic awareness application of the Data Science Lifecycle on the
COVID-19 domain and shows the benefits of considering ontologies and other semantic

structures as tools for enhancing different steps of the DS Lifecycle.

Even though there are ontology terms groupwise metrics in the literature, they are not as
present and accessible as the ones measuring pairwise similarities. So, in the context where
groupwise distance between sets of objects are required, an adaption of the Mabotuwana et al.
(2012) proposal for calculating groupwise similarities was made so Wang et al. (2007) was

computed.

The level of details of all the metrics used in this work serves not only for better problem
understanding, but also for making this research more committed on reproducibility, which is
a fundamental tenet of science (Alston et al., 2021). Also, still on reproducibility aspect, the

link to this study Source Code, can be accessed by clicking here.

The use as a comparison of semantically unaware metrics, the Cosine Similarity was used
and the results on each step where both metrics were used, the benefits were clearly shown.
Firstly, when calculating groupwise similarities, Cosine Similarity, as explained shown on
Figure 8 led to false (dis)similarities between data objects and was pointed that could lead to
bad results later, on the Data Mining step, which really occurred. Figures 10 and 11 shows how
the overall silhouettes score (i.e.) on an overall are considerably higher when enriching data

with semantics.

On Figure 12 aims giving the reader a visualization of the most important results in a
nutshell. Which displays the overlapping clusters, that is a result of the semantically unaware
similarity calculation. Also, such visual results agree with silhouette values found on the Data
Pre-Processing step. On the other side of the graphic, which shows results of a semantically
enriched Data Science project, intra-clusters distances are minimized, and inter-cluster
similarities are maximized. Finally, a brief analysis on the quality of the grouping of diseases

1s made when presenting Figure 14.



Also, to make visualization of results clearer, this work relied on both Matplotlib (Hunter
et al., 2007) and Seaborn (Waskom, 2021), which are environments for Data Visualization and

helped me as results were better displayed.

This study was conducted in the context of the project "Effectiveness of COVID-19
Vaccination in Brazil Using Mobile Data" (EFFECT-BR), which is one out of ten, among 440
others worldwide, selected by the Grand Challenges ICODA COVID-19 Data Science, funded
by the Bill & Melinda Gates foundation. Also, the Center for Healthcare Operations and
Intelligence (NOIS®) which is part of PUC-Rio Industrial Engineering Department, together
with Tecgraf institute, Fundagdo Oswaldo Cruz (FIOCRUZ) and Instituto D’Or (IDOR) gave
the support needed so this study could be made.

6.1 Future Works

In this work, text treatment step on this work did not rely on modern Natural Language
Processing (NLP) techniques. Leading, to manual tasks such as linking terms in the DO with
data regarding comorbidities of the patients hospitalized. Therefore, as future work, such step

can be automatized so more information can be considered.

Also, enriching the similarity pairwise metric by not only considering is_a relationships,
but many others an ontology can provide. Also, such as the work of Glenda et al. (2021), the
use of foundational ontologies and their associated metaproperties can also be applied for a

project using the Data Science Lifecycle.

Since the computation of groupwise similarities relied on taking as an input regular
pairwise similarity metrics, future works can also use other metrics such as Jiang and Conrath
(1997), Resnik (1999) and Lin (1998) ones might be used, depending on the problem to solve
and which one give better results. A combination of metrics, by assigning weights for each is

also a possibility

5 http://www.nois.ind.puc-rio.br



Gilbert et al. (2013) on their work presents the concept of semantical variables, which
consider if a structure on a data set represents either an individual or a class, for assigning
weights when calculating similarities. But also more important, semantic variables are paired
with ordinary numerical and categorical ones, which wasn’t attacked on this work and shall be

done in future works inspired on this work.

Also, as a personal view, most of works making the connection with the world of
ontologies with the world of data science is mainly on the bioinformatics, pairing ontologies to

Data Science projects on other domains

This work based its Data Mining step on Unsupervised Machine Learning techniques.
However, there are a plenty of opportunities to take the proposal of this work into Classification

Algorithms.
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